Introduction to Descriptive Set Theory
نویسنده
چکیده
Mathematicians in the early 20th century discovered that the Axiom of Choice implied the existence of pathological subsets of the real line lacking desirable regularity properties (for example nonmeasurable sets). This gave rise to descriptive set theory, a systematic study of classes of sets where these pathologies can be avoided, including, in particular, the definable sets. In the first half of the course, we will use techniques from analysis and set theory, as well as infinite games, to study definable sets of reals and their regularity properties, such as the perfect set property (a strong form of the continuum hypothesis), the Baire property, and measurability. Descriptive set theory has found applications in harmonic analysis, dynamical systems, functional analysis, and various other areas of mathematics. Many of the recent applications are via the theory of definable equivalence relations (viewed as sets of pairs), which provides a framework for studying very general types of classification problems in mathematics. The second half of this course will give an introduction to this theory, culminating in a famous dichotomy theorem, which exhibits a minimum element among all problems that do not admit concrete classification.
منابع مشابه
Lectures on Infinitary Model Theory
Infinitary logic, the logic of languages with infinitely long conjunctions, plays an important role in model theory, recursion theory and descriptive set theory. This book is the first modern introduction to the subject in 40 years, and will bring students and researchers in all areas of mathematical logic up to the threshold of modern research. The classical topics of back-and-forth systems, m...
متن کاملGames and Scales
The construction and use of Suslin representations for sets of reals lies at the heart of descriptive set theory. Indeed, virtually every paper in descriptive set theory in the Cabal Seminar volumes deals with such representations in one way or another. Most of the papers in the section to follow focus on the construction of optimally definable Suslin representations via game-theoretic methods....
متن کاملRandomness via effective descriptive set theory
1.1 Informal introduction to Π1 relations Let 2N denote Cantor space. • A relation B ⊆ N × (2N)r is Π1 if it is obtained from an arithmetical relation by a universal quantification over sets. • If k = 1, r = 0 we have a Π1 set ⊆ N. • If k = 0, r = 1 we have a Π1 class ⊆ 2N. • The relation B is∆1 if both B and its complement are Π1. There is an equivalent representation of Π1 relations where the...
متن کاملTowards Synthetic Descriptive Set Theory: An instantiation with represented spaces
Using ideas from synthetic topology, a new approach to descriptive set theory is suggested. Synthetic descriptive set theory promises elegant explanations for various phenomena in both classic and effective descriptive set theory. Presently, we mainly focus on developing the ideas in the category of represented spaces.
متن کاملON THE FUZZY SET THEORY AND AGGREGATION FUNCTIONS: HISTORY AND SOME RECENT ADVANCES
Several fuzzy connectives, including those proposed by Lotfi Zadeh, can be seen as linear extensions of the Boolean connectives from the scale ${0,1}$ into the scale $[0,1]$. We discuss these extensions, in particular, we focus on the dualities arising from the Boolean dualities. These dualities allow to transfer the results from some particular class of extended Boolean functions, e.g., from c...
متن کامل